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ABSTRACT 
 

This study focuses on the topology optimization of structures using a hybrid of level set 

method (LSM) incorporating sensitivity analysis and isogeometric analysis (IGA). First, the 

topology optimization problem is formulated using the LSM based on the shape gradient. 

The shape gradient easily handles boundary propagation with topological changes. In the 

LSM, the topological gradient method as sensitivity analysis is also utilized to precisely 

design new holes in the interior domain. The hybrid of these gradients can yield an efficient 

algorithm which has more flexibility in changing topology of structure and escape from 

local optimal in the optimization process. Finally, instead of the conventional finite element 

method (FEM) a Non–Uniform Rational B–Splines (NURBS)–based IGA is applied to 

describe the field variables as the geometry of the domain. In IGA approach, control points 

play the same role with nodes in FEM, and B–Spline functions are utilized as shape 

functions of FEM for analysis of structure. To demonstrate the performance of the proposed 

method, three benchmark examples widely used in topology optimization are presented. 

Numerical results show that the proposed method outperform other LSMs. 
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1. INTRODUCTION 
 

In the past three decades, topology optimization has been considered as a powerful and 

popular tool for designers and engineers [1]. Furthermore, topology optimization has been 

extensively utilized to a variety of structural optimization problems such as the stiffness 
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maximization problem, vibration problems, optimum design problems for compliant 

mechanisms, and thermal problems. The main aim of topology optimization is to find the 

geometry of a design in terms of shape and topology to perform a specific task optimally, 

ranging from discrete gridlike structures to continuum structures [2, 3]. In contrast to the 

detailed designs (e.g. size and shape optimizations) of a structure, topology optimization 

does not require a close–to–optimal initial design and is able to generate optimal geometries 

when intuitive design approaches fail, e.g., due to complex interdependencies between 

design parameters and the structural response. A number of methods such as Optimality 

Criteria (OC) methods [4, 5], the approximation methods [6–9], the Method of Moving 

Asymptotes (MMA) [9–11], Evolutionary Structural Optimization (ESO) method [12] and 

even more heuristic methods such as genetic algorithm [13] and ant colony [14] have been 

proposed for solving the topology optimization problems. 

Recently, the level set method (LSM) originally proposed by Osher and Sethian [15] has 

been applied as a new technique well suited to optimizing shape and topology of structures. 

The LSM is firstly introduced for the structural topology optimization by Sethian and 

Wiegmann [16]. In the LSMs, the boundary is implicitly represented as the zero level–set of 

a higher dimensional level set function of Lipschitz continuity. The level set function is 

defined over a fixed reference domain that includes all the admissible shapes and topologies 

of the design domain. In the LSMs, a pseudo–time is normally defined into the level set 

function to enable the dynamic evolution of the discrete level set function [17, 18]. A level 

set equation called the Hamilton–Jacobi Partially Differential Equation (H–J PDE) is 

utilized to describe the level set representation of dynamic implicit surfaces. Appropriate 

numerical approachs [15] are proposed to obtain the steady–state solution of the H–J PDE. 

The motion of the level set function along the normal direction can lead to the motion of the 

design boundary, as well as the shape and topological changes of the structure at the zero 

level–set. In the shape and topology optimization process based on the LSM approach, the 

geometry and shape changes are described as propagation of the boundary with a given 

speed function only defined at the interface. However, due to the mass conservative law, the 

LSM cannot create new holes inside the solid domain [16]. This drawback is considerably 

increased in topology optimization process. Hence, the topological gradient method as 

sensitivity analysis was proposed to overcome this drawback [17]. It has been indicated that 

this approach efficiently create new holes such that the strong dependency of the optimal 

topology on the initial design can be alleviated. In recent years, studies on structural 

topology optimization based on the LSMs have been presented [18–20]. 

In the development of advanced computational methodologies, Hughes et al. [21] 

proposed a Non–Uniform Rational B–Splines (NURBS)–based isogeometric analysis (IGA) 

to eliminate the gap between computer–aided design (CAD) and finite element analysis. In 

contrast to the standard finite element method (FEM) with Lagrange polynomial basis, the 

IGA approach utilizes more general basis functions such as NURBS that are common in 

CAD approaches. Thus, IGA is very promising because it can directly use CAD data to 

describe both exact geometry and approximate solution. 

The main contribution of the present study is to introduce a hybrid of the LSM 

incorporating sensitivity analysis and IGA for topology optimization of structures. To 

achieve this purpose, first, the LSM based on the shape gradient is utilized to solve the 

topology optimization problem. The topological gradient method is also incorporated in the 
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LSM process to precisely design new holes in the interior domain. Then, instead of the 

conventional FEM a NURBS–based IGA is applied to describe the field variables as the 

geometry of the domain. In IGA approach, control points is considered as the same role with 

nodes in FEM and B–Spline basis functions are utilized as shape functions of FEM for 

analysis of structure. Three benchmark examples are presented to demonstrate the validity of 

the proposed method. The optimum results are compared with those reported in the 

literature. The optimal results reveal that the proposed method is a powerful topology 

optimization algorithm with fast convergence rate in comparison with the other LSMs. 

 

 

2. STRUCTURAL TOPOLOGY OPTIMZATION PROBLEM 
 

In this study, a linear elastic structure is considered to describe the problem of structural 

optimization. For this perpose, R
n  is assumed an open and bounded set occupied by a 

linear isotropic elastic structure. The boundary of   consists of three parts 

d u t     , with Dirichlet boundary conditions on 
u  and Neumann boundary 

conditions on .t  Furthermore, 
d is traction free. The displacement field in   is the unique 

solution of the linear elastic system and is expressed as [22]: 
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where u is the nodal displacement field function. The strain tensor and the stress tensor   

at any point   are defined in the usual form as: 

 

( ) ( )

1
( ) ( )

2

ji

j i

ij ijkl kl

ij

uu

x x

u E u

u










 








 (2) 

 

where ijklE is the elasticity tensor; and ij is the liberalized strain tensor. The topology 

optimization is to find a suitable shape in the admissible design space, so that the objective 

functional can reach its minimum or at least a local minimum. Therefore, this can be 

expressed as follows [23, 24]: 
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where v is the adjoint displacement field function in the space U of kinematically admissible 

displacement fields. Field function u0 prescribes displacement field on partial boundary 
u .

p is the body force.  is the boundary traction. The inequality describes the limit on the 

amount of material in terms of the maximum admissible volume maxV  of the design domain. 

 

 

3. IMPLICIT REPERESENTION OF THE BOUNDARY 
 

Level set method (LSM) is a high effective method developed by Osher and Sethian [15] 

may also be referred to as implicit moving boundary models. The boundary   is implicitly 

defined as an iso–surface of the embedding ( )x as shown in Fig. 1. 

 

 
Figure 1. Diagram of level set function and its implicit boundary 

 

These definitions are also expressed as follows [15, 24]: 
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The implicit function ( )x is used to represent the boundary and to optimize it, as it was 

originally developed for curve and surface evolution. The change of the implicit function

( )x is governed by the simple convection equation as: 
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where ( )V x  defines the velocity of each point on the boundary. The parameter t is a 

fictitious time parameter that represents the optimization iteration number, and the time step, 

t, is chosen in such away that the Courant–Friedrichs–Lewy (CFL) conditionis satisfied [17]. 

Since the tangential components of V would vanish, it can be written as: 
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The normal velocity 
NV is related to the sensitivity of the shape to the boundary variation. 

These two H–J PDEs are the well–known level set equations [17, 22]. To ensure the 

convergence of the differential equation (5) using finite differences, the step time should 

satisfy CFL [17] condition: 
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h
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V
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where h is the minimum distance between points of the grid and max nV  is the maximum 

value of the points of the grid. 

Based on the level set theory, the topology optimization problem is transformedinto a 

problem of finding the steady–state solution of the H–J equation. As it can bee seen from 

Equations (6) and (7), after the initial level set function ( )x is identified, to get afeasible 

steady–state solution, the crux is to find a meaningful velocity field. Hence, the optimization 

problem can be formulated using the LSM, as:  
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where ( , , )a u v  and  ,L v  are the energy bilinear form and the load linear form, respectively. 

The terms are given as follows: 
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where ( )x and ( )H x are the Dirac function and the Heaviside function, recpectivily.  

 

 

3. OPTIMIZATION METHOD WITH SHAPE SENSITIVITY 
 

To find a minimization solution to the optimization problem, it is needed to find the 

variation of the objective functional with respect to a variation of the design variable. This 

process is usually called sensitivity analysis. And, since in this case the design variable is the 

shape represented by the LSM, it is also called shape sensitivity analysis and the result is 
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called shape gradient or shape derivative. Based on the shape gradient analysis, the steepest 

descent direction is directly obtained by: 

 

        . :nV F u p v div v E u v       (10) 

 

Thus, this choice would give a computational framework for obtaining an approximate 

solution such as the algorithms used in [24, 25]. 

 

 

4. OPTIMIZATION METHOD WITH TOPOLOGICAL SENSITIVITY 
 

4.1 Topological gradient 

Topological gradient as sensitivity measure has been used by many researchers to solve 

topology optimization problems [17, 26–28]. This method can account for the sensitivity of 

creating a hole at the interior point of the design domain. Topological gradient is defined by 

several ways. The definition proposed by Sokolowski and Zochowski [26] is as follows: 
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where S  denotes the design domain,  represents a small hole centered at x S  and of 

radius a . J  is the objective functional of interest.  is the measure of  . Thus,

  2 2ax     . 

 

4.2 The topological gradient concept with volume constraint 

In order to solve the optimization problem (3), the augmented Lagrangian method is utilized. 

Hence, the following definition is the object function of the optimization problem with 

volume constrain: 
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where   is the Lagrange multiplier. Then, the topological gradient with volume constraint 
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by substituting (13) into (14), it is obtained: 

 

 'TD x TD    (15) 

 

where λ can be determined with [25]: 
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where  , ,u w   describes the sensitivity of the objective function  ,J u   with respect to 

the boundary variation of the design. Although, the value of TD is always greater than zero, 

when the value of λ is great than ,TD the value of TD will be less than zero. That’s mean the 

hole can be created to decrease the object function. 

 

 

5. ISOGEOMETRIC ANALYSIS 
 

Isogeometric analysis (IGA) has developed as powerful computational approach that offers 

the possibility of integrating finite element analysis (FEA) into conventional NURBS–based 

CAD tools [21]. The concept of the IGA is great interest in various engineering problems 

that is utilized for the discretization of partial differential equations. The main advantage of 

IGA is to utilize the NURBS basis functions that accurately model the exact geometries of 

solution space for numerical simulations of physical phenomena.  

 

5.1 B–Spline and NURBS basis function 

A NURBS surface is parametrically constructed as [29]: 
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where ,i jP
 
are ( , )n m control points, ,i j are the associated weights and , ( )i pN   and , ( )j qN   

are the normalized B–splines basis functions of degree p  and q  respectively. The i th B–

splinebasis function of degree ,p denoted by , ( )i pN  , is defined recursively as:  
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and 
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where  0 1, ,..... r    is the knot vector and, i  are a non–decreasing sequence of 

realnumbers, which are called knots. The knot vector  0 1, ,..., s     is employed to define 

the , ( )j qN  basis functions for other direction. The interval    0 0, ,r s    forms a patch 

[21].  A knot vector, for instance in   direction, is called open if the first and last knots 

have a multiplicity of 1.p   In this case, the number of knots is equal to .r n p   Also, the 

interval  1,i i   is called a knot span where at most 1p   of the basis functions , ( )i pN   are 

non–zero which are , ,( ),...., ( )i p p i pN N  . 

 

5.2 NURBS based isogeometric analysis formulation 

By using the NURBS basis functions for a patch ,p the approximated displacement functions 

 ,pu u v  can be expressed as [11]: 
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where , ( , )i jR   is the rational term in Equation (17). Furthermore, the geometry is 

approximated by B–spline basis functions as [11]: 
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By using the local support property of NURBS basis functions, Equations (20) and (21) 

can be summarized as it follows in any given 1 1( , ) [ , ) [ , ).i i j j         
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Final, the stiffness matrix for a single patch is also computed as, 
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T
d dt    


 K B DB J  (24) 

 

where t is the thickness, B ( , )  is the strain–displacement matrix, and J is the jacobian 

matrix which maps the parametric space to the physical space. D is the elastic material 

property matrix for plane stress. It is noted that in this study the standard Gauss–quadrature 

over each knot space is utilized for numerical integration.  
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6. LEVEL SET BASED ISOGEOMETRIC TOPOLOGY OPTIMIZATION 
 

In order to implement isogeometric topology optimization based on the LSM incorporating 

sensitivity analysis, the NURBS based–IGA approach is utilized instead of in the 

conventional FEM. In fact, in IGA control points play the same role with nodes in FEM and 

B–Spline basis functions are utilized as shape functions of FEM for analysis of structure. 

Boundary conditions are directly imposed on control points. Numerical integration is 

implemented almost same with FEM in order to transform the parametric domain to master 

element for Gauss quadrature. The design model are also modeled using a fixed 

isogeometric. For achieving this purpose, the “Ersatz material” approach [17] is utilized in 

this study in order to avoid the time–consuming re–meshing process of design model 

topology optimization procedure. Based on the “Ersatz material” approach, the elements 

associated with the void (hole) region are modeled by a weak material. Therefore, the 

flowchart of discretized isogeometric topology optimization method based on the LSM is 

depicted in Fig. 2. 

 

 
Figure 2. Flowchart of the isogeometric topology optimization based on the LSM 

incorporating the sensitivity analysis 

 

 

7. NUMERICAL EXAMPLE 
 

To demonstrate the isogeometric topology optimization of structures using the LSM 

incorporating the sensitivity analysis, three examples of isotropic plane elasticity problem 

are presented in this section. In all examples the modulus of elasticity, the Poisson’s ratio 
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and thickness are considered as 1Pa, 0.3 and 0.01m, respectively. In the analysis procedure 

of structures, “Ersatz material” approach [17] is utilized, which fills the void areas with one 

weak material. For this purpose, Young’s modulus of Ersatz material is assumed as 10–3Pa. 

The order of NURBS basis functions in each direction is equal to be 2. 

 

7.1 Cantilever beam 

The first problem is the cantilever beam shown in Fig. 3, which is a benchmark problem in 

topology optimization. As shown in Fig. 3, the length of the domain is L 80mm and the 

height is H 40 .mm  The cantiliver is subjected to a concentrated load P=1N at the middle 

point of the free end. The volume constraint is 40% of the total domain volume. The time 

step, t, is taken as 10; and the coefficient of the topology gradient is taken as 2. 
 

 
Figure 3. Fixed design domain and boundary condition of a cantilever example 

 

In this example, the initial geometry is modeled based on a bi–quadratic NURBS geometry 

with 10×6 control points. The open knot vectors are respectively {0, 0, 0, 0.125, 0.25, 0.375, 0.5, 

0.625, 0.75, 0.875, 1, 1, 1} and {0, 0, 0, 0.25, 0.5, 0.75, 1, 1, 1} in 
 
and 

 
direction, thus 

leading to 8 4 knot spans. By subdividing each knot span into 10 equal parts in 
 
and   

direction, the physical mesh with 80×40 knot spans and the control mesh with 82×42 control 

points are obtained. The evolution procedure of structural topology based on the proposed 

method is shown from Figs. 4(a) to 4(f). The final topology of the cantilever is also depicted in 

Fig. 4(f). 

 

 
Figure 4. The evolution of optimal topology of the cantilever beam 
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In recent years, this example has investigated by other researchers [18, 19, 31]. The final 

optimal topology obtained the proposed method of this study is compared with those 

obtained in other studies [18, 19, 31] and shown in Fig. 5. 

 

 
(a) The conventional LSM with FEM [18] 

 
(b) The binary LSM and holes with FEM [18] 

 
(c) The binary LSM and non-holes with FEM [18] 

 
(d) The radial basis function LSM with IGA [19] 

 
(e) The enhanced LSM with FEM [31] 

 
(f) This study 

Figure 5. The comparison of the final optimal topology in this study with the other studies 

 

As can been seen from Fig. 5, the final design obtained in this study is similar to those 

reported in the literature. Furthermore, the optimal results of this study and other studies are 

compared and presented in Table 1.  

 
Table 1: Comparison of the proposed method and other studies 

Schemes 
Objective 

function (J(Ω)) 

Number of convergence 

Iterations 

The conventional LSM with FEM [18] 63.88 200 

The binary LSM and holes with FEM [18] 62.73 115 

The binary LSM and non-holes with FEM [18] 64.18 100 

The radial basis function LSM with IGA [19] 62.66 60 

The enhanced LSM with FEM [31] 80.22 81 

The proposed method 62.082 37 
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It is obvious from Table 1 that the performance of the proposed algorithm is more 

efficient than the other LSMs. The evolution of the compliance and the volume fraction are 

shown in Fig. 6. The value of the compliance at the optimal design is 62.082. 

 

 
Figure 6. The convergence histories of the compliance and volume ratio 

 

 

7.2 Messerschmitt–Bölkow–Blom beam 

Messerschmitt–Bölkow–Blom (MBB) beam considered as the second example is the 

benchmark problem for topology optimization. The geometry model and loading conditions 

of the MBB beam is shown in Fig. 7. The length of the domain is L 120mm and the height 

is H 30 .mm  The problem is subjected to a concentrated load P=1N at the upper half of the 

vane. In the optimization procedure, the specified material volume fraction is 40%. 

 

 

Figure 7. Fixed design domain and boundary condition of the MBB beam 

 

In the first stage, the topology optimization is performed based on the proposed method 

with 12030 mesh isogeometric and the topology evolving history is depicted in Fig. 8. The 

topology evolving history shows that the final topology is obtained in the 51 iterations. 
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Figure 8. The evolution of optimal topology of the MBB beam 

 

In second stage, FEM as an analyzer instead of IGA is utilized in order to demonstrate 

the performance of the proposed method. The number of degree of freedoms in FEM are 

also equal to those of IGA. The final topology optimization obtained the proposed method 

is compared with that obtained by the LSM incorporating sensitivity analysis and FEM and 

shown in Fig. 9. 

 

 
(a) 

 
(b) 

Figure 9. The comparison of the final optimal topology based on (a) FEM and (b) IGA 

 

It can been observed from Fig. 9 that the final design obtained in the IGA is similar to 

that of FEM. The optimal results obtained with the two different schemes are listed in Table 

2.  

 
Table 2: Comparison of the results obtained based on the FEA and IGA 

Schemes Objective function (J(Ω)) Number of convergence Iterations 

FEM 48.220 72 

IGA 48.156 48 

 

The results of Table 2 indicates that the IGA outperformed the FEM. Figs. 10 and 11 

show the structural strain energy variation history during optimization for the IGA and the 

FEM, respectively. In thses figures the iteration history of material usage within the design 

domain during topology evolving are also depicted.  
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Figure 10. The convergence histories of the compliance and volume ratio for the IGA 

 

 

Figure 11. The convergence histories of the compliance and volume ratio for the FEM 

 

It can be can be concluded from Figs. 10 and 11 that the convergence of the IGA is faster 

than that of the FEM. The optimal design generated by using the proposed method is also 

compared with that reported in Mohamadian and Shojaee [32] and shown in Fig. 12. 

 

 
(a)  

 
(b) 

Figure 12. The comparison of the final optimal topology based on (a) the binary LSM and 

FEM, (b) the proposed method 
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As it is observed the obtained topologies are basically the same. However, it is noticed 

that the corners of the diagonal members are different. 

 

7.3 Michell structure 

The third problem is the Michell structure shown in Fig. 13. The length of the domain is 

L 80mm  and the height is 40 .H mm the problem is subjected to a concentrated load 

P 1N at the bottom half of the vane. In the optimization procedure, the specified material 

volume fraction is 40%. 

 

 
Figure 13. Fixed design domain and boundary condition of the Michell–type structure 

 

In the first stage, the topology optimization is performed based on the proposed method 

with 8040 mesh isogeometric and the topology evolving history is depicted in Fig. 14. The 

topology evolving history shows that the final topology is obtained in the 69 iterations. The 

value of the compliance at the optimal design is 18.222. 

 

 
Figure 14. The evolution of optimal topology of the Michell beam 

 

In second stage, the final topology of the example obtained by FEM as an analyzer 

instead of IGA in order to demonstrate the performance of the proposed method. It is noted 
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that the number of degree of freedoms in FEM are also equal to those of IGA. The final 

topology optimization obtained the proposed method is compared with that obtained by the 

FEM and shown in Fig. 15. 

 

 
(a) 

 
(b) 

Figure 15. The comparison of the final optimal topology based on (a) FEM and (b) IGA 

 

It can been seen from Fig. 15 that the final design obtained based on the IGA is similar to 

that of FEM. The optimal results obtained with the two different schemes are listed in Table 

3.  

 
Table 3: Comparison of the results obtained based on the FEA and IGA 

Schemes Objective function (J(Ω)) Number of convergence Iterations 

FEM 18.398 70 

IGA 18.222 56 

 

As can be seen from Table 3, the number of convergence Iterations of the IGA is 

considerably lower than that of the FEM. Hence, the proposed method has more stability.  

 

 

8. CONCLUSIONS 
 

In this study, a hybrid of the LSM with sensitivity schemes and IGA has been developed for 

topology optimization. In this LSM, the boundary propagation with topological changes is 

implemented using the shape gradient. Furthermore, the topological gradient method is also 

incorporated into the LSM to precisely design new holes in the interior domain. In the 

topology optimization procedure the NURBS based–IGA approach is utilized instead of in the 

conventional FEM.  

The validity and robustness of the hybrid of the LSM with sensitivity schemes and IGA is 

shown through the benchmark examples widely used in topology optimization. The final 

topology obtained by the proposed method are compared with outcome of topology 

optimization based on the LSM with FEM and other LSM techniques, and the results show 

similar topologies. The optimization results also demonstrate that the convergence rate of 

the proposed method is obviously higher than that in the LSM with FEM and other LSM 

techniques. Therefore, the proposed method has more stability and can be considered as a 

powerful topology optimization algorithm. 

 



ISOGEOMETRIC TOPOLOGY OPTIMIZATION OF STRUCTURES USING LEVEL ... 

 

421 

REFERENCES 
 

1. Dijk NP, Maute K, Langelaar M, Keulen F. Level–set methods for structural topology 

optimization: a review, Struct Multidiscip Optim 2013; 48: 437-72. 

2. Bendsøe MP, Sigmund O. Topology Optimization: Theory, Methods, and Applications, 

Springer, Berlin, 2003. 

3. Bendsoe MP, Kikuchi N. Generating optimal topologies in structural design using a 

homogenization method, Comput Methods Appl Mech Eng 1988; 71: 97-224. 

4. Rozvany GIN. Structural Design via Optimality Criteria, Kluwer Academic Publishers, 

Dordrecht, 1989. 

5. Rozvany GIN, Zhou M. The COC algorithm, Part I: Cross section optimization or 

sizing, Comput Methods Appl Mech Eng 1991; 89: 281-308. 

6. Schmit LA, Farsi B. Some approximation concepts for structural synthesis, AIAA J 

1974; 12(5): 692-99. 

7. Schmit LA, Miura H. Approximation Concepts for Efficient Structural Synthesis, NASA 

Publisher, Washington, United States, 1976. 

8. Vanderplaats GN, Salajegheh E. A new approximation method for stress constraints in 

structural synthesis, AIAA J 1989; 27(3): 352-58. 

9. Svanberg K. The method of moving asymptotes–a new method for structural 

optimization, Int J Numer Meth Eng 1987; 24: 359-73. 

10. Tavakkoli SM, Hassani B, Ghasemnejad H. Isogeometric topology optimization of 

structures by using MMA, Int J Optim Civ Eng 2013; 3: 313-26.  

11. Kazemi HS, Tavakkoli SM, Naderi R. Isogeometric topology optimization of structures 

considering weight minimization and local stress constraints, Int J Optim Civil Eng 

2016; 6(2): 303-17. 

12. Xie YM, Steven GP. A simple evolutionary procedure for structural optimization, 

Comput Struct 1993; 49(5): 885-96.  

13. Jakiela MJ, Chapman C, Duda J, Adewuya A, Saitou K. Continuum structural topology 

design with genetic algorithms, Comput Methods Appl Mech Eng 2000; 186: 339-56. 

14. Kaveh A, Hassani B, Shojaee S, Tavakkoli SM. Structural topology optimization using 

ant colony methodology, Eng Struct 2008; 30(9): 2559-65.  

15. Osher S, Sethian JA. Front propagating with curvature dependent speed: algorithms 

based on Hamilton–Jacobi formulations, J Comput Phys 1988; 78: 12-49. 

16. Sethian JA, Wiegmann A. Structural boundary design via level set and immersed 

interface methods, J Comput Phys 2000; 163(2): 489-528. 

17. Allaire G, Jouve F, Toader AM. Structural optimization using sensitivity analysis and a 

level set method, J Comput Phys 2004; 194: 363-93. 

18. Shojaee S, Mohamadian M, A Binary Level Set Method for Structural Topology 

Optimization, Int J Optim Civil Eng 2011; 1(1): 73-90. 

19. Shojaee S, Mohamadian M, Valizadeh N. Composition of isogeometric analysis with 

level set method for structural topology optimization, Int J Optim Civil Eng 2012; 2(1): 

47-70. 

20. Shojaee S, Mohaghegh A, Haeri A. Peiecwise constant level set method based finite 

element analysis for structural topology optimization using phase field method, Int J 

Optim Civil Eng 2015; 5(4): 389-407. 



M. Roodsarabi, M. Khatibinia and S.R. Sarafrazi 

 

422 

21. Hughes TJR, Cottrell J, Bazilevs Y. Isogeometric analysis: CAD, finite elements, 

NURBS, exact geometry and mesh refinement, Comput Methods Appl Mech Eng 2005; 

194: 4135-95. 

22. Xia Q, Shi T, Liu S, Wang MY. A level set solution to the stress–based structural shape 

and topology optimization, Comput Struct 2012; 90-91: 55-64 

23. Wang M, Wang XM, Guo DM. A level set method for structural topology optimization, 

Comput Methods Appl Mech Eng 2003; 192: 227-46. 

24. Osher S, Fedkiw R. Level Set Methods and Dynamic Implicit Surfaces, Springer, 2002. 

25. Wang XM, Wang MY, Guo DM. Structural shape and topology optimization in a level-

set framework of region representation, Struct Multidiscip Optim 2004, 27(1–2), 1-19. 

26. Sokolowski J, Zochowski A. On the topological gradient in shape optimization, SIAM J 

Cont Optim 199, 37: 1251-72. 

27. Burger M, Hackl B, Ring W. Incorporating topological gradients into level set methods, 

J Comput Phys 2004; 194: 344-62. 

28. He L, Kao C, Osher S. Incorporating topological gradients into shape gradient based 

level set methods, J Comput Phys 2007; 225: 891-909. 

29. Piegl L, Tiller W. The NURBS Book, Springer, 2nd edition, Germany, 1995.  

30. Shojaee S, Mohammadian M. Structural topology optimization using an enhanced level 

set method, Scientia Iranica A 2012, 19(5): 1157-67. 

31. Mohammadian M, Shojaee S, Binary level set method for structural topology 

optimization with MBO type of projection, Int J Numer Meth Eng 2012; 89(5): 658-70. 


